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Abstract—Some similarity solutions are presented for velocity and temperature profiles within the thin
film of fluid that forms between a moving hot interface and a melting solid. The use of dimensionless
variables brings out the role of various dimensionless groups, in particular when a shear and temperature-

dependent viscous fluid is considered.

A simplified heuristic method of solution of the full problem for the cas: of plasticating extruders
is discussed.

NOMENCLATURE

A, dimensionless constant;

b, temperature coefficient of viscosity;

B, temperature ratio based on b and plate
temperature;

B*, modified temperature ratio;

C,, specific heat of solid;

C;, specific heat of fluid;

C, constant;

C,,  viscosity constant;

Gn,  Brinkmann number;

H,  depth of solid bed;

k, thermal conductivity;

L, characteristic length of apparatus;

M, inverse Graetz number; temperature ratio
based on latent heat of fusion and plate
temperature;

I, pressure;

Q. volume flux in z-direction;

S, dimensionless variable in s-direction;

v, y component of fluid velocity;

w, z component of fluid velocity;

W,, velocity of moving plate;

y,2, Cartesian coordinates.

Greek symbols

o, dimensionless depth of layer;

B, power-law coefficient of viscosity;

é, layer thickness;

5, representative layer thickness;

d,,  constant layer thickness;

K, thermal diffusivity based on k, p, Cy;

A¥*,  apparent latent heat of fusion;

A, iatent heat of fusion;

©,  dimensionless mean temperature;

e, dimensionless temperature;

é, temperature;

8., bulk solid temperature;

6y, temperature of plate at y = 0;
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i, fluid viscosity;

i, representative fluid viscosity;

Ay constant;

or,  fluid density;

ps,  solid density;

1, dimensionless coordinate in y-direction;
L, dimensionless coordinate in z-direction;
¥, dimensionless velocity in z-direction;
D, dimensionless velocity in y-direction;
¢, ¥, ¥, similarity functions for velocity;

8,0, similarity functions for temperature;

% dimensionless flux.

1. INTRODUCTION

The physical problem

WE CONSIDER the two-dimensjonal situation shown
diagrammatically in Fig. 1. A hot plate y = 0 held at
constant temperature § = , > 0 moves with constant
velocity W, in the z-direction. A deformable but
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FiG. 1. Diagram of flow region.

coherent bed of solid whose melting point is 6 =0 is
pushed against the hot plate in the region z>0. A
barrier occupies the line z =0, y > 0; in practice we
may assume that some molten material leaks to the
point (0, 0) and so there is some initial flux of molten
material at z = 0, but we do not wish to be too precise
about this aspect at this stage.
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The steady-state physical situation is known from
experience to involve a thin layer of highly sheared
liquid in the neighbourhood of the hot plate across
which heat is conducted to melt the solid; if the
viscosity of the melt is high enough, significant heat
may be generated within the fluid layer which adds to
the rate of melting. Clearly the depth of the fluid layer
can be expected to increase with z. We seek here to
calculate the rate of melting, particularly with refer-
ence to the situation that arises in the melting of
thermoplastic powders or granules, which have low
thermal conductivity.

The full mechanics of the situation is necessarily
complex, in that the solid cannot be taken to be
wholly rigid if a steady-state situation is to ensue (the
rate of melting at various stations z will not in general
be equal and so the solid must deform if a melting
interface fixed in space is to be achieved). On the other
hand, the solid material is usually sufficiently well
packed for it to resist in large measure the local shear
stresses at its melting interface caused by the drag of
the fluid above it. Thus, in many cases it seems that
one can suppose the interface material to have no
velocity in the z-direction and a very small one in the
negative y-direction.

We shall develop the partial differential equations
and associated boundary conditions that govern flow
in the thin liquid layer making full use of obvious and
well-known approximations. These, when made dimen-
sionless, yield the relevant dimensionless parameters
that determine the possible regimes of melting. The
problem (of solving these equations) only becomes
determinate if the thickness of the liquid layer is not
prescribed, when some additional assumption is made
about the pressure distribution in the liquid layer;
this latter has to be related to the stress-deformation
properties of the solid bed. It will be argued that a
suitable approximation is provided by supposing the
flow to be drag-flow, i.e. that the pressure is effectively
constant everywhere.

2. MATHEMATICAL FORMULATION

If » and w are the velocities in the y and z directions
respectively, and the fluid is taken to be incompressible
(with density p ) the continuity equation is simply

v ow

P 0 (1
If we take d(z) to be the thickness of the layer, then
the statement that § is small is to be interpreted as
dd/dz « 1; the order of this term is §/L where L is
some characteristic length of the apparatus, such as
the depth or width of the bed and 4 is a representative
layer thickness. We can later confirm that these
quantities are indeed small. On the assumption that
déd/dz is very much less than unity, then we may at
once invoke the lubrication approximation [1] as
regards the momentum equations, particularly since
we can assume in cases of interest to us that the
Reynolds number p,W,5/i is small (where 7 is a

representative fluid viscosity). This yields the stress
equilibrium relation

222 @
z  oy\ dy

where p is pressure and yu may be a function of tem-
perature and shear rate dw/dy.

The energy equation will here be chosen to include
convection, conduction and generation terms. This
yields, for the steady state, bearing in mind that
8%/02* « 32/8y*? inthe full conduction term, and assum-
ing that specific heat C,; and thermal conductivity k
are constant,
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In common with earlier work we shall write

L (] N

giving an exponential temperature dependence and a
power-law shear-rate dependence.
Five boundary conditions are seen at once to be

w=W, v=0 6=8 on y=0 (5
w=0, =0 on y=24. {6)

If melting is to take place, and the position of the
interface is to be stationary, then v(d) will be determined
by the rate at which heat flows into the solid bed from
the liquid. Thus the last boundary condition becomes

kggzpfAv at y=4 Ul
where A is the effective latent heat of fusion of the fluid.
(This would in general be the true latent heat plus the
amount of heat —C; 8, required to raise the cold solid
from its bulk temperature -6, to its melting tempera-
ture.) It will be noticed that the equations (1)-{7)
involve two unknown functions p(z) and §(z). Without
further information, they are not determinate. If p(z) or
&(z) is assumed known they at once become so.

(a) The uniform gap approximation
If we suppose & to be a constant J,, then it can be
shown by order of magnitude arguments that the
pressure differences arising within the liquid layer along
its full length will be of order L/J, greater than the shear
stresses at the interface. Thus in simple terms the normat
stresses at the interface will dominate the shear stresses.
The simplest way to derive the result is to consider
the case of a Newtonian fluid of constant viscosity
melting uniformly along its length L across a liquid
film of thickness 8, where the lower surface is dragging
the fluid at a velocity W, (i.e. precisely the circumstances
we have outlined above). The flux Q in the z direction
is given by
3
g= %méo - '}.'12' 5_0 EE .
u dz
The second term must be at least of the same order as
the first if Q is to be zero at z = 0. The shear stress
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will be of order uQ/6?; the pressure drop between
z=0and z = L will be of order uQL/63; their ratio is
therefore L/d, as required.

The next stage in the argument is to decide whether
these large normal pressures can indeed be sustained
by the solid bed. In practice, the bed will be granular
and so although non-isotropic stress can be sustained,
all three principal stresses will always be of the same
magnitude to within a factor of about 3. Thus the
pressure uQL/5} must not be large compared with
other pressures generated. When the case of a plas-
ticating screw extruder is considered, it is found that
the pressures generated by the melt pumping mech-
anisms are too small to balance those implied by
8, == constant. However, to carry out the order-of-
magnitude calculation, an estimate must be made of
8,; this is done by noting that the solid bed of depth H
melts over a length of order 20L and so we deduce
that 8, ~ H/10. The melt pumping mechanism over the
same length leads to pressure differences of order
20uW,L/H? ~ 20uQL/H?3,; the relevant ratio turns
out thus to be 100:1. We can therefore deduce that a
uniform gap does not arise.t

(b) The constant pressure approximation

From the conclusion of the last sub-section we can
assume that normal stresses generated on the thin liquid
layer above the melting interface will be sufficient to
deform the solid bed; the constant depth approxi-
mation is not relevant. Indeed, we may argue that, since
the interfacial normal stresses that the bed can sustain
will be no higher than the interfacial shear stresses, a
reasonable approximation to the flow in the liquid layer
will be given by p = constant, dp/dz = 0. What we are
really asserting is that those variations in p(z) that do
arise will only have a small effect on the liquid layer
flow, which can be taken to be drag-flow everywhere.

Making this assumption, we are now in a position
to make equations (1)—(7) dimensionless. Anticipating
the methods of solution we shall subsequently use, and
remembering that 8,/L « 1, we choose as dimension-

less coordinates
{=2z/L, n=y/6 ®)

«=5/5, ©)

(a function of { only) is, by definition, of order one,
as are its derivatives. We also choose, for obvious
reasons, a dimensionless temperature

where

® =6/, (10
and dimensionless velocities
¥ =w/W,; @=vL/W,5,. 3y
The boundary conditions (5) and (6) become
¥(0,0)=1; ®0,0)=0; ®0,)=1 (12
¥(1,0)=0; 8(1,)=0 (13

+The argument would be more complicated if we took
account of heat generation and convection but the con-
clusion would be essentially the same; a posteriori use of a
mean & based on the constant pressure approximation
effectively confirms the deduction.
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thus confirming the choice of scale temperature and
velocity for ® and W. The melting condition (7) becomes

k6, L 0O

psAW, 8 on

This is the boundary condition that determines the
physical process and so the dimensionless parameter
k8, Ljp; AW, 8 should be O(1). This then is the obvious

way of choosing 8, to give the correct scaling for the
various variables. We may therefore write

=qb at =1 (14

k6o L \*
8y = (pfAW,,> . (15
Equations (1)—(3) then become, using (4),
¥ o ¥ 100
e e b= —— = ) 16
X o on  aon (19)
0 [ _pef0F\ %
. il =0 17
on {e (317) 4

and

* )
M'l(\}f‘a—@-—“—w A -@—)

o a ’;“5;1‘ a On
2 228
16®+ Gn (6‘?) 5 (19)

“Far e\
where
Camz—aﬂLﬁ
B—_—bgO, MQA/CIB(), Gn=m. (19)

B, M and Gn can all be thought of as ratios of tem-
peratures. B measures the ratio of the imposed tem-
perature difference to the natural rheological tempera-
turescale b™*;if Bis small, then the flow is rheologically
almost isothermal, and there is no ® effect in equations
(16} and (17). M measures the ratic of the change of
internal energy involved in melting to the change in-
volved in raising the temperature of the liquid by &y;
if M is large, melting will be slow and convection of
heat measured by the LHS of equation (18) will be
small compared with conduction, measured by the first
term on the RHS. Gn is a Brinkmann number and
measures the ratio of the equilibrium rise in tempera-
ture in the liquid layer due to viscous heating to the
imposed temperature difference. If Gn is small, gener-
ation is unimportant. If it is large, then the argument
used in choosing §, as in (15) is unsatisfactory in that
generation can make ®(n) large compared with unity;
8, is no longer a suitable scale temperature. Similarly
if M is small.

(c) Similarity solutions
The set of equations (16)-(18) together with the
boundary conditions (12), (13) and

C]
A 'S
aﬂ o at
{obtained from (14) and (15)) can readily be seen to
admit the similarity solution
Y=y @=n«();
provided § = 0.

n=1 (20)

0==060 (2D
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The variables ¥, ¢, 6 and « are now given by

ny'—¢'=0 (22)
e ®yy =0 23
M7 Ay — )8 + 0"+ Ga(y' Y e B =0 (29
a0l = A (25)
with boundary conditions
Y0 =1, ¢(0)=0, 8(0)=1; (26)
Y()=0, 8(1)=0, 6(1)= A¢(1). @7

It will be noticed that the constant A is in a sense a
characteristic (or eigen) value of the solution, in that
(26) and (27) provide six boundary conditions to the
fifth-order set of equations (22)-(24). It is determined
by any given choice of B, M and Gn. (25) is solved to
give o = (2AE

Equation (22) can be integrated to give

tﬁ(l):J m//’dn=—-j wdn
4] 0

and so
A= —9’(1)“ Ydy.
{ Jo

Although the similarity solution will not hold strictly
when 8 > 0, a locally valid approximate solution could
be obtained by taking

W,\"*
Ho = Co("g')

3. SOLUTION METHODS

It is not immediately clear how the full set of equa-
tions (16)—(18) and boundary conditions (12), (13) and
(20) could be solved by direct numerical means. Since
(16) and (18) are partial differential equations involving
first order derivatives in {, we may assume that initial
conditions at { = 0 would be given. We note that
¥ (5, 0) would have to be everywhere positive and that
Y(n, 0) and O(y, 0) would be specified subject to equa-
tion (17) and the relevant boundary conditions on ¥
and © in {12) and (13). ® can be obtained formally
by integration from (16); «(0) would also be
specified. A coupled pair of integro-differential equa-
tions for W(n, {) and «({) result. Iterative schemes can
be devised, but these prove to be expensive in com-
puting time and have furthermore to be carefully
categorized in terms of B, M, Gn and the initial condi-
tions. In practice what one seeks to calculate is the flux

Q[
1= Wooo fo win, Odn 28)
and the associated mean temperature
1
@) = L Y, O, Odn/x(©) (29)

together with a({).

We shall now try to develop a simple approximate
method for deriving these, based on a few special
solutions. Further details of these are given in [2],
copies of which can be obtained on demand.

It will be useful in the case of similarity solutions,
using (28), (15) and our earlier results for 4 and «,
to write

— 2k W,y (DN
M

- ( -ZKW.,xG'(l)z)*
prA '

Q=Woéx=<

AN

It is also worth noting that by direct integration
of (22) and (23) we have

n
¢ = j Qprdé; Ye M=y,
o
Thus (24) can be written
A n
9"+—~j ydég+Gnfyy’ = 0.
Mo
One further integration yields when» =1

% 18 = 0, — 0, — Gnyr'. (29a)

This is the obvious dimensionless form of the integrated
energy balance.

(@) Thecase M » 1, B« L,f=0

This is the full lubrication approximation for near
isothermal fluid. The relevant solution can readily be
seen to be

A=(Gn+2) (30)
0= (WO(I +%Gn)% z)i = (WUL;E’Q rczy 3y

and

0 = G+ 14Gn)o. (32)

(b) The case M » 1, Gn « 1

This retains the full lubrication approximation, but
neglects generation.

If we write B* = B/{1—2), then the relevant solu-
tions are

B
= @) (33)
I R S
PEB T T A “
_(Wo2(e” —B*~1) kb z\} (34
Q= B* e’ —1) A
and
. BeB¥ _ 1) — (B*2 —
_ 2e(B*~ 1)~ (B**~2) (9

2B*(e” — (1+ B¥))

{c) Thecase M » L,B=10

This extends the results of Section 3(a) to a fluid with
temperature-dependent viscosity.

Using results given in [3], we obtain

ef—-1 1

BGn ¥Gn (36

=31+
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where
Y=
_ BGn \! _ BGn\*
tanh ‘((l—tpz)(—z?—;) >+tanh ‘(1//2(5?97) )
(3BGneBy
(37)
and
PR a9
2= 27 BGn
BGn (e®—1)
5= 20 HeP 1 : 39
e 3 +3E5+ 1)+ BCn (39
Using

B

we can evaluate Q. 6 is not readily expressible in
explicit form.

Bi_ ()\4
#(1) = (ZGn(e 1)> "

(d) Thecase M »1,=0,Gn» 1

It may readily be seen that Y, and x ~ 3%, that
¥y ~ 8InGn/BGn, that ¥ ~ % almost everywhere and
that

A1 kW, 2(In Gn)\*
6~ 3 In(4BGn), 0~ (T) (40)

provided B is large enough.

From the results in sub-sections 3(a-d) we may
readily calculate Q, 6, and « for all values of B and Gn,
on the assumption that M > 1.

(e) Thecase f=0,B« 1
The velocities ¥ and ¢ become directly ¥ = 1—n;
¢ = —3$n%. Equation (22) becomes

A
0”+~M(n—%nz)0’+Gn =0. (41)

This may be integrated once to give
o e—ziM(nZ—m <%_Gn jﬂeﬁw—m d§> @)
0
and again to yield
0=
1+ f ' e_ﬁ(fz_*zs’ (9’0—Gn f ' eﬁ(cx_%cl)dc)dé 3)
0 ]

where use has been made of 8(0) = 1. The conditions
0(1) = 0 and 6'(1) = A¢(1) yield the implicit relations

1A ey ¢ Ay
—1=j e M (0’0—Gn j M dC)df (44)

0 0

and

0

A 1 A ey
—$A=¢ M (06—Gn_J M dé) (45)

from which 6 may be eliminated and A obtained as an
implicit function of M and Gn. Since y = }, we find that

2kW, A2\
o- (5

(46)

If Gn « 1, we note that

A 1 A 2

— - = (-4

1=Ae3MJ e M d¢
(4]

and that 4

6= MM —1). (47)
(f) Thecase =0, M « 1

The equation (24) is dominated by the convective
term, and so & « 1, except in the neighbourhood of
n = 0. We try to rescale the 5 coordinate using

S = (4/M)n (48)
to give
s
s+ Os j Y(r)dt = O(M/A) (49)
0
where 8(S) = 0(n), ¥(S) = y/(n).
Unless B is large, the equation
Us = (M/AYY, = ¢ O (50)

means that J(S) is essentially 1—-0(M/A)* for S of
order unity, and so (49) becomes, to order (M/A)?,

Oss+S0s = 0. (51)
This integrates to give
fs = Bsoe™ 52 (52)
and again to yield
§ ~ 1+ 050 A/(m/2) exf(S). (53)

This, when rewritten in terms of #, can be used in the
relation 8(1) = 0 to give B5(0) to order (M/A)?, since
erf(A/MY ~ 1. Thus

24

+
0,0)= — (; M) +0(1). (54)

To the same order of approximation x = % and 6=0.
What we need, of course, is to discover how A
depends on M. Equation (41) gives

M
and so from
A= —0/y

we get

A~ 2(MGn)* (55)
confirming that (M/A)~ (M/4Gn)? is small, and
making

4k W, Gn?z\*

A matched asymptotic expansion to improve the result
could be carried out but is not needed here. If Gn is
small, then a special analysis shows that 4/M ~ In M.
This last applies for § # 0 also.
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(8) An heuristic approach

We may now return to the general problem of solving
equations (16)—(18). Clearly, the first step in any par-
ticular situation is to calculate B, M~ ! and Gn. It may
be remarked in passing that M ™! can also be regarded
as a Graetz number, for it has been shown [4] that,
for such a situation

Gz=p;C; W,0kL = M™!

using (15) and (19). If any of B, M~! or Gn « 1, then
one of the solutions above may be employed. In doing
this, we are assuming that the basically parabolic
equations (16) and (18) will have solutions that rapidly
settle down to their unique similarity form. In practice
(for plastics extruders) we find that B is significant,
Gn is relatively small and that 8 and M are of order
unity.

We shall try to make use of the fact that we have
available well-tried numerical methods for solving the
equations with M =0. We shall therefore attempt
what is essentially an expansion in powers of M ™. We
find it convenient to use (1) in the integrated form

O[040
8zowy~ oz’

Neglecting convection terms in (3), w and 0 are given by

() = (57)

(0) 0 (ON1-28
9 e (W =0 (58)
ay ay
and
229 o w02~ 28
o+ Coe T =0 59
e <6y> (59)
with
wO(0) = W,, 00(0) = 0, w(8) = 0, 8(8) = 0. (60)

If 6 is given the solution is unique. But since the
boundary condition (7) gives

0= 52

prixoy

it is clear from (57) that it is information about Q that
will be carried forward to larger values of z. Hence
we suppose that Q(z) is given and thus (58)—(60) are
taken to imply J(z). Equation (61) then yields 8Q/dz.
If we now try to improve our approximation for 8 in
(61) we are tempted to solve for 8 = @+, w =
w® +w where we have

(61)

W0 WO
—_ =0 62
Oy 0z (62
w'®/0z being supposed known,
9 (e—b(ew'w‘”) 6“(W(0}+W(1))1 41]) =0 (63)
oy Jy
k620(0)+0(11+ : e—b(8‘°’+9‘“) 0(w(0)+w(1))2’2ﬂ
oy? ’ dy
00 a0
= 0.C[ w® ) 64
Ps f(W 27 F ) (64

with
wB(0) = 8V(0) = w(5) = 0 =0 (65)
and
k 00w
el
(6) = oA Gy ——(4). (66)

This would clearly be a laborious process to undertake
in every case, and so an heuristic alternative has been
used that assumes 861)/dy to bear a fixed relation to
009/dy at y = §. This is then interpreted in terms of
an apparent A* chosen so that

20©

0) o
i’%ﬁ*:z\ = (67)

The ratio A*/A can be derived formally from the
similarity solutions given in subsections 3(a), 3(b) and
3(c) in the form

A* = A(1+CM™Y (68)

where 0 < C < 1 and C is related to §. Some details
are given in the Appendix of [2], where it becomes
clear that the value C = 6 taken by Shapiro [5] is too
high. This value was obtained by supposing that all
the heat required to raise the temperature of the
melting fluid to the mean temperature 6 came from
conduction at the melting interface. If however one
assumes that the heat required to raise the temperature
of the fluid melted at the interface y = § to § comes
equally from the interfaces y = 0 and y = J, then

C =146

An exact expansion shows that in the case B =0,
Gn=20,

(69)

C = 6.

By dealing almost entirely with similarity solutions
we have avoided serious consideration of any initial
conditions at z = 0.If we are given Q(0) we can estimate
6(0) and hence obtain «(0). Using a particular similarity
solution yielding a given A, this means that

{0)= 51% #2(0) and not zero

24z +
a(z) = <T+a2(0)) .

In practice «%(0) soon becomes negligible.

A preliminary application of this work to the melting
of polymer granules is given in another report [6];
further work is in progress.

and so
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SUR LA FUSION DES SOLIDES AU VOISINAGE D’'UN INTERFACE CHAUD MOBILE,
AVEC REFERENCE PARTICULIERE AU CAS DES LITS DE POLYMERES GRANULES

Résamé—On présente quelques solutions de similitude pour les profils de vitesse et de température a

Pintérieur du film mince de fluide qui se forme entre un interface chaud en mouvement et le solide en fusion.

L'utilisation de variables adimensionnelles met en évidence le role des divers groupements sans dimension,

et en particulier lorsqu’on considére le cisaillement d’un fluide dont la viscosité dépend de la température.

Une méthode de solution euristique simplifiée est discutée pour le probléme complet dans le cas de
TI'extrusion avec déformation plastique.

DAS SCHMELZEN VON FESTKORPERN NAHE EINER HEISSEN BEWEGTEN
SCHICHT, INSBESONDERE VON POLYMER-GRANULAT-BETTEN

Zusammenfassung— Ahnlichkeitsldsungen werden angegeben fiir Geschwindigkeits-und Temperatur-

profile im diinnen Film eines Fluids, der sich zwischen der bewegten heissen Zwischenschicht und dem

schmelzenden Festkdrper bildet. Die Benitzung von dimensionsiosen Variablen zeigt die Rolle der

verschiedenen dimensionslosen Gruppen, insbesondere fiir schubspannungs- und temperaturabhingige

viskose Fluide. Eine vereinfachte heuristische Losungsmethode des Gesamtproblems fiir Plastik-Extruder
wird diskutiert.

O TUTABJIEHMM TBEPABIX TEJ BBJIW3HU IBUKYIUENCS NOPAYEN TMMOBEPXHOCTH
PA3AEAA MPUMEHUTEJIBHO K CJIOAM I'PAHVJIMPOBAHHbBIX TNOJTUMEPOB

Annorauus — IMpusoastcs HEKOTOpLIE pellieHs noaobus Ans npoduselt CKOPOCTH H TEMIEPATY B!
B TOHKOM xuaKol nneHke, obpazyromielics MeXAy ABWKYLIEHCH ropsyell NOBEPXHOCTHIO pa3aena
W TUIaBAUWKMCS TBEPALIM TesloM, C nioMouibio 6e3pa3MepHbIX NEPEMEHHbBIX BLIABNAETCH 3HAYCHHE
pa3nMyHbIX 6e3pa3MepHbIX TPYNM, B YaCTHOCTH TIPH PACCMOTPEHHH KWAKOCTH, BA3ZKOCTbH KOTOPOH
3aBUCHT OT HaNPXKECHNWA CABUTA M TEMIEPATYPbl.
AHANUIUPYETCH YIPOINEHHBI IBPUCTHYECKHI METOA PEICHUSN 33 1a¥H IPUMEHNTENILHO K CYMal0
NIACTHHHDYICIUMX JKCTPYACPOB.



