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Abstract-Some sj~la~ty solutions are presented for velocity and temperature proi&s within the thin 
film of fluid that forms between a moving hot interface. and a melting solid. The use of dimensionless 
variables brings out the role of various dimensionless groups, in particular when a shear and temperature- 
dependent viscous fluid is considered. 

A simplified heuristic method of solution of the full problem for the case of plasticating extruders 
is discussed. 

NOMENCLATURE 

dimensionless constant; 
temperature coefficient of viscosity; 
temperature ratio based on b and plate 
temperature; 
m~ifi~ tem~ratu~ ratio; 
specific heat of solid; 
specific heat of fluid; 
constant; 
viscosity constant; 
Brinkmann number; 
depth of solid bed; 
thermal conductivity; 
characteristic length of apparatus; 
inverse Graetz number; temperature ratio 
based on latent heat of fusion and plate 
temperature; 
pressure; 
vohmze flux in zdirection; 
dimensionless variabie in s-direction; 
y component of fluid velocity; 
z component of fluid velocity; 
velocity of moving plate; 
Cartesian coordinates. 

Greek symbols 

dimensionless depth of layer; 
power-law coefficient of viscosity; 
layer thickness; 
r~~entative layer thickness; 
constant layer thickness; 
thermal diffusivity based on k, P, Cf; 
apparent latent heat of fusion; 
latent heat of fusion; 
dimensionless mean temperature; 
dimensionless temperature; 
temperature; 
bulk solid temperature; 
temperature of plate at y = 0; 

PY fluid viscosity; 

w representative fluid viscosity; 

4 constant; 

Pft fluid density; 

PSY solid density; 

:: 

d~e~ionl~ coordinate in y-direction; 
dimensionless coordinate in z-direction; 

y, dimensionless velocity in z-direction; 

26 $3 

dimensionless velocity in y-direction; 
similarity functions for velocity; 

0,8, similarity functions for temperature; 

x3 dimensionless flux. 

1. INTRODUCTION 

The physical problem 
WE CONSIDER the two-dime~jonal situation shown 
dia~~maticaIIy in Fig. 1. A hot plate y = 0 held at 
constant temperature B = &, > 0 moves with constant 
velocity W. in the z-direction. A deformable but 

Melting solid 

Conducting flat plate, t6mpefo?We B, 

FIG. 1. Diagram of flow region. 

coherent bed of solid whose melting point is fl = 0 is 
pushed against the hot plate in the region z > 0. A 
barrier occupies the line z = 0, y > 0; in practice we 
may assume that some molten material leaks to the 
point (0,O) and so there is some initial flux of molten 
material at z = 0, but we do not wish to be too precise 
about this aspect at this stage. 
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The steady-state physical situation is known from 
experience to involve a thin layer of highly sheared 
liquid in the neighbourhood of the hot plate across 
which heat is conducted to melt the solid; if the 
viscosity of the melt is high enough, significant heat 
may be generated within the fluid layer which adds to 
the rate of melting. Clearly the depth of the fluid layer 
can be expected to increase with z. We seek here to 
calculate the rate of melting, particularly with refer- 
ence to the situation that arises in the melting of 
thermoplastic powders or granules, which have low 
thermal conductivity. 

The full mechanics of the situation is necessarily 
complex, in that the solid cannot be taken to be 
wholly rigid if a steady-state situation is to ensue (the 
rate of melting at various stations 2 will not in general 
be equal and so the solid must deform if a melting 
interface fixed in space is to be achieved). On the other 
hand, the solid material is usually sufficiently well 
packed for it to resist in large measure the local shear 
stresses at its melting interface caused by the drag of 
the fluid above it. Thus, in many cases it seems that 
one can suppose the interface material to have no 
velocity in the z-direction and a very small one in the 
negative v-direction. 

We shall develop the partial differential equations 
and associated boundary conditions that govern flow 
in the thin liquid layer making full use of obvious and 
well-known approximations. These, when made dimen- 
sionless, yield the relevant dimensionless parameters 
that determine the possible regimes of melting. The 
problem (of solving these equations) only becomes 
determinate if the thickness of the liquid layer is not 
prescribed, when some additional ~sumption is made 
about the pressure distribution in the liquid layer; 
this latter has to be related to the stress-deformation 
properties of the solid bed. It will be argued that a 
suitable approximation is provided by supposing the 
flow to be drag-flow, i.e. that the pressure is effectively 
constant everywhere. 

2. MATHEMA~CAL FORMULATION 

If o and w are the velocities in the y and z directions 
respectively, and the fluid is taken to be incompressible 
(with density pf) the continuity equation is simply 

If we take 6(z) to be the thickness of the layer, then 
the statement that 6 is small is to be interpreted as 
dsjdz <c 1; the order of this term is 8/L where L is 
some characteristic length of the apparatus, such as 
the depth or width of the bed and 8 is a representative 
layer thickness. We can later confirm that these 
quantities are indeed small. On the assumption that 
d&/dz is very much less than unity, then we may at 
once invoke the lubrication approx~ation Cl] as 
regards the moments equations, particularly since 
we can assume in cases of interest to us that the 
Reynolds number prW,S/ji is small (where p is a 

representative fluid viscosity). This yields the stress 
equilibrium relation 

where p is pressure and p may be a function of tem- 
perature and shear rate aw/Y?y. 

The energy equation will here be chosen to include 
convection, conduction and generation terms. This 
yields, for the steady state, bearing in mind that 
d2/dz2 cc d2/ay2 in the full conduction term, and assum- 
ing that specific heat C, and thermal conductivity k 
are constant, 

in common with earlier work we shall write 

p(= coe-b6 aw 2 I( )I -# - 
ay 

giving an exponential temperature dependence and a 
power-law shear-rate dependence. 

Five boundary conditions are seen at once to be 

w= &, c = 0, @ = ee on y=O. (5) 

w = 0, B = 0 on y = 6. (6) 

If melting is to take place, and the position of the 
interface is to be stationary, then u(6) will be determined 
by the rate at which heat flows into the solid bed from 
the liquid. Thus the last boundary condition becomes 

ke=ppfAu at y=6 
aY 

where A is the effective latent heat of fusion of the fluid. 
(This would in general be the true latent heat plus the 
amount of heat - C,6, required to raise the cold solid 
from its bulk temperature -t?, to its melting tempera- 
ture.) It will be noticed that the equations (l)-(7) 
involve two unknown functions p(r) and 6(z). Without 
further information, they are not determinate. If p(z) or 
6(z) is assumed known they at once become so. 

(a) The uniform gap approximation 
If we suppose 6 to be a constant 6,, then it can be 

shown by order of magnitude arguments that the 
pressure differences arising within the liquid layer along 
its full length will be of order L/6, greater than the shear 
stresses at the interface. Thus in simple terms the normal 
stresses at the interface will dominate the shear stresses. 

The simplest way to derive the result is to consider 
the case of a Newtonian fluid of constant viscosity 
melting uniformly along its length L across a liquid 
film of thickness 6, where the lower surface is dragging 
the fluid at avelocity W, (i.e. precisely the circumstances 
we have outlined above). The flux Q in the z direction 
is given by 

The second term must be at least of the same order as 
the first if Q is to be zero at z = 0. The shear stress 
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will be of order pQ/St; the pressure drop between 
z = 0 and z = L will be of order pQL,/sz; their ratio is 
therefore L/S, as required. 

thus confirming the choice of scale temperature and 
velocity for 0 and Y. The melting condition (7) becomes 

The next stage in the argument is to decide whether 
these large normal pressures can indeed be sustained 
by the solid bed. In practice, the bed will be granular 
and so although non-isotropic stress can be sustained, 
all three principal stresses will always be of the same 
magnitude to within a factor of about 3. Thus the 
pressure pQL,&~ must not be large compared with 
other pressures generated. When the case of a plas- 
ticating screw extruder is considered, it is found that 
the pressures generated by the melt pumping mech- 
anisms are too small to balance those implied by 
6, = constant. However, to carry out the order-of- 
magnitude calculation, an estimate must be made of 
6,; this is done by noting that the solid bed of depth H 
melts over a length of order 20L and so we deduce 
that S, z H/10. The melt pumping mechanism over the 
same length leads to pressure differences of order 
2O~~~L/H’ cx 2O~Q~~~~~~; the relevant ratio turns 
out thus to be 1OO:i. We can therefore deduce that a 
uniform gap does not arise.? 

(b) The constant pressure approximation 
From the conclusion of the last sub-section we can 

assume that normal stresses generated on the thin liquid 
layer above the melting interface will be sufficient to 
deform the solid bed; the constant depth approxi- 
mation is not relevant. Indeed, we may argue that, since 
the interfacial normal stresses that the bed can sustain 
will be no higher than the interfacial shear stresses, a 
reasonable approximation to the flow in the liquid layer 
will be given by p = constant, dp/dz = 0, What we are 
really asserting is that those variations in p(z) that do 
arise will only have a small effect on the liquid layer 
flow, which can be taken to be drag-flow everywhere. 

Making this assumption, we are now in a position 
to make equations (l)-(7) dimensionless. Anticipating 
the methods of solution we shall subsequently use, and 
remembering that SO/L CC 1, we choose as dimension- 
less coordinates 

i = ZlL, r? = Y/6 (8) 
where 

G1 = s/s, (9) 

(a function of [ only) is, by definition, of order one, 
as are its derivatives. We also choose, for obvious 
reasons, a dimensionless temperature 

0 = efe, (10) 
and dimensionless velocities 

Y = w/w,; @ = vLJW,G,. (11) 

The boundary conditions (5) and (6) become 

Y(O,<)=l; @(O,O=O; 0(0,5)= 1 (12) 

Y(1, <) = 0; O(l,[) = 0 (13) 

fThe argument would be more compiicated if we took 
account of heat generation and convection but the con- 
clusion would be essentially the same; n posteriori use of a 
mean (i based on the constant pressure approximation 
effectively confirms the deduction. 

k&L ao 
----_?----=ctQ, at q=l. 
PrAWd, av 

(14) 

This is the boundary condition that determines the 
physical process and so the dimensionless parameter 
k& L/p~AW*~~ should beO(1). This then is the obvious 
way of choosing 6, to give the correct scaling for the 
various variables. We may therefore write 

(15) 

Equations (l)-(3) then become, using (4), 

dY u’ au, 1 acD -__-__.-+f--_~ 
ai u a4 u all (16) 

~{e-B@($>'-'")=O (17) 

and 

1 a20 Gn aY 2-2p 
=---7+----- - 2 all (> 2-2fl aq 

eCBB (18) 

where 

B, M and Gn can all be thought of as ratios of tem- 
peratures. B measures the ratio of the imposed tem- 
perature difference to the natural rheological tempera- 
ture scale b- * ; if B is small, then the flow is rheologically 
almost isothermal, and there is no 0 effect in equations 
(16) and (17). M measures the ratio of the change of 
internal energy involved in melting to the change in- 
volved in raising the temperature of the liquid by 8,; 
if M is large, melting will be slow and convection of 
heat measured by the LHS of equation (18) will be 
small compared with conduction, measured by the first 
term on the RHS. Gn is a Brinkmann number and 
measures the ratio of the equilibrium rise in tempera- 
ture in the liquid layer due to viscous heating to the 
imposed temperature difference. If Gn is small, gener- 
ation is un~~rt~t. If it is large, then the ~gument 
used in choosing 6, as in (15) is unsatisfactory in that 
generation can make e(q) iarge compared with unity; 
B. is no longer a suitable scale temperature. Similarly 
if M is small. 

(c) Similarity solutions 
The set of equations (16)-(18) together with the 

boundary conditions (12), (13) and 

ao 
--a@ at q=l 

-&- (20) 

(obtained from (14) and (15)) can readily be seen to 
admit the similarity solution 

Y = rif(~); @ = #(~)~‘(~); 0 = e(q) (211 

provided j% = 0. 
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The variables $, &8 and tl are now given by 

r&V--# = 0 (22) 

(eeBB$‘)’ z 0 (23) 

M-‘A(n$ - #)@‘+ 8” + G&V)’ eaBB = 0 (24) 

ZCZ’ = A (2.5) 

with boundary conditions 

+(o) = 1, 4(O) = 0, B(0) = 1; (26) 

i//( 1) = 0, e(l) = 0, P(l) = @J(l). (27) 

It will be noticed that the constant A is in a sense a 
characteristic (or eigen) value of the solution, in that 
(26) and (27) provide six boundary conditions to the 
fifth-order set of equations (22)-(24). It is determined 
by any given choice of B, M and Gn. (25) is solved to 
give ff = (2A5)*. 

Equation (22) can be integrated to give 

9(l)=~e’Nd~= - jol$& 

and so 

A = -syl) i ‘Wur. 
‘I 0 

Although the similarity solution will not hold strictly 
when a > 0, a locally valid approximate solution could 
be obtained by taking 

-211 

3. SOLUTION METHODS 

It is not immediately clear how the full set of equa- 
tions (16)-(18) and boundary conditions (12), (13) and 
(20) could be solved by direct numerical means. Since 
(16) and (18) are partial differential equations involving 
first order derivatives in [, we may assume that initial 
conditions at 5 = 0 would be given. We note that 
Y(n, 0) would have to be everywhere positive and that 
Y(Q 0) and O(n, 0) would be specified subject to equa- 
tion (17) and the relevant boundary conditions on Y 
and 0 in (12) and (13). Q, can be obtained formally 
by inte~ation from (16); or(O) would also be 
specified. A coupled pair of integrodifferential equa- 
tions for Y(q, [) and cc([) result. Iterative schemes can 
be devised, but these prove to be expensive in com- 
puting time and have furthermore to be carefully 
categorized in terms of B, M, Gn and the initial condi- 
tions. In practice what one seeks to calculate is the flux 

(28) 

and the associated mean temperature 

s 

1 
a(<) = ‘r(s i)%, ~)d~/~(~) 

0 
(29) 

together with a([). 
We shall now try to develop a simple approximate 

method for deriving these, based on a few special 
solutions. Further details of these are given in [2], 
copies of which can be obtained on demand. 

It will be useful in the case of similarity solutions, 
using (28), (15) and our earlier results for A and a, 
to write 

Q = Wob~ = 
-2kO,, W,zxel(l) 

PI A 

It is also worth noting 
of (22) and (23) we have 

that by direct integration 

@e-Be= +;. 

Thus (24) can be written 

One further integration yields when rl = 1 

$&= ~~-~~-G~~~. (29a) 

This is the obvious dimensionless form of the integrated 
energy balance. 

(a) The case M >> 1, B CC 1, 8 = 0 
This is the futl lubrication approx~ation for near 

isothermal fluid. The relevant solution can readily be 
seen to be 

A = (Gn+2) (30) 

Q= (31) 

and 

0 = (: + &Gn)&, . (32) 

(b) The caSe M >> 1, Gn CC 1 
This retains the full lubrication appro~mation, but 

neglects generation. 
If we write B* = B/( 1 - 2/3), then the relevant solu- 

tions are 

‘4 = B*(es’- l) fe8’+(1 (33) 

Wo2(eB* - Z?* - 1) k& z * 
(34) 

Q= 

and 

A 2eB*(B*-1)-(B*2-2) 

‘= 2B*(eB*-(l+B*)) ’ (35) 

fc) The case M >> 1, fl= 0 
This extends the results of Section 3(a) to a fluid with 

temperature-dependent viscosity. 
Using results given in [3], we obtain 

(36) 
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If Gn << 1, we note that 
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tanh-l((l-$z)($~)+tanh-l($,($~) 

(+BGn e’“)* 
(37) 

(38) 

eB* = 
(eB - 1)’ 

~++(e”+l)+------. 
2BGn 

(39) 

Using 

we can evaluate Q. e^ is not readily expressible in 
explicit form. 

(d) The case M >> 1, /I = 0, Gn >> 1 
It may readily be seen that lclz and x N 3, that 

t/i N 8 In Gn/BGn, that tj N f almost everywhere and 
that 

e* N f ln(&BGn), Q 
N (rcW.z;Gn))” (40) 

provided B is large enough. 
From the resultsA in sub-sections 3(a-d) we may 

readily calculate Q, 0, and CI for all values of B and Gn, 
on the assumption that M >> 1. 

(e) The case /? = 0, B << 1 
The velocities tj and 4 become directly $ = 1 --q; 

4 = -$J*. Equation (22) becomes 

fY+$(q-&f)B’+Gn = 0. (41) 

This may be integrated once to give 

(42) 

and again to yield 

0= 

where use has been made of 0(O) = 1. The conditions 
0( 1) = 0 and t?‘(l) = A& 1) yield the implicit relations 

-$A=e 
AK’-at7 

e2M d5 (45) 

from which 8 may be eliminated and A obtained as an 
implicit function of M and Gn. Since x = 3, we find that 

(46) 

_ 1 

l= Ae3: e M 
s 

-%C2-fC2) 

d{ 
0 

and that 

e* = M(e3’ - 1). (47) 

(f) The case /3 = 0, M << 1 
The equation (24) is dominated by the convective 

term, and so 8’ c 1, except in the neighbourhood of 
r) = 0. We try to rescale the 9 coordinate using 

S = (A/M)+? (48) 

to give 

&+& 
s 

: $(t)dt = O(M/A) (49) 

where B(S) = (WI), $(S) = $(rl). 
Unless B is large, the equation 

gs = (M/A)+$, = t+b; esBCs) (50) 

means that g(S) is essentially l-O(M/A)* for S of 
order unity, and so (49) becomes, to order (M/A)*, 

8,s + sas = 0. (51) 

This integrates to give 

Bs = OS0 e-s2i2 

and again to yield 

(52) 

B N 1 + Sso &c/2) erf(S). (53) 

This, when rewritten in terms of q, can be used in the 
relation e(l) = 0 to give 6&(O) to order (M/A)*, since 
erf(A/M)* N 1. Thus 

&f(O)= - a; *+0(l). 
( > 

To the same order of approximation x = $ and 6 = 0. 
What we need, of course, is to discover how A 

depends on M. Equation (41) gives 

tYl = -2GnT 

and so from 

A = -e;/x 

we get 

A N 2(MGn)* (55) 

confirming that (M/A) N (M/4Gn)* is small, and 
making 

Q N (4Ky’r)‘. (56) 

A matched asymptotic expansion to improve the result 
could be carried out but is not needed here. If Gn is 
small, then a special analysis shows that A/M 2: In M. 
This last applies for /I # 0 also. 
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(g) An heuristic approach 

We may now return to the general problem of solving 
equations (16))(18). Clearly, the first step in any par- 
ticular situation is to calculate B, M-’ and Gn. It may 
be remarked in passing that M-’ can also be regarded 
as a Graetz number, for it has been shown [4] that, 
for such a situation 

Gz = pfC/ W,$/kL = M-’ 

using (15) and (19). If any of B, M-’ or Gn CC 1, then 

one of the solutions above may be employed. In doing 
this, we are assuming that the basically parabolic 

equations (16) and (18) will have solutions that rapidly 
settle down to their unique similarity form. In practice 
(for plastics extruders) we find that B is significant, 
Gn is relatively small and that p and M are of order 
unity. 

We shall try to make use of the fact that we have 
available well-tried numerical methods for solving the 
equations with M = 0. We shall therefore attempt 
what is essentially an expansion in powers of M-‘. We 

find it convenient to use (1) in the integrated form 

u(6) = -; s rs aQ 
wdy=--. (57) 

0 i?Z 

Neglecting convection terms in (3), w and f3 are given by 

~{e~~~‘0’(~)‘~2u} = 0 (58) 

and 

k 

with 

w”‘(0) = W,, Q(“)(O) = Bo, ~(~$3) = 0, ll’o’(6) = 0. (60) 

If S is given the solution is unique. But since the 

boundary condition (7) gives 

u(6) = J!- !!f (6) 
~4 ay 

it is clear from (57) that it is information about Q that 
will be carried forward to larger values of z. Hence 

we suppose that Q(z) is given and thus (58)-(60) are 
taken to imply 6(z). Equation (61) then yields i?Q/az. 

If we now try to improve our approximation for f3 in 
(61) we are tempted to solve for fI = Bco)+@‘), w = 
w(O) + w(i), where we have 

do’0 aw’o’ o 
-++--_ 
ay az 

dw”‘/dz being supposed known, 
^ 

Oe 
a.tf ( _b(H,O,+H,I~, a(do)+d1))- = 

ay ! o 

k a28’0’+ “” 
+c e_bCB,O,+H,jsj awo~+d9~-2~ 

ay2 0 ay 

=Pfcf 
se(o) se(O) ,CO~_+,CW_ 
aZ ay > 

(62) 

(63) 

(64) 

with 

and 

w”‘(0) = (j(‘)(O) = w’“(6) = @i’(6) = 0 (65) 

I!(“(a)=Lc?!(~). 
pfA ay (66) 

This would clearly be a laborious process to undertake 

in every case, and so an heuristic alternative has been 
used that assumes a@‘)/ay to bear a fixed relation to 
a@‘)/ay at y = 6. This is then interpreted in terms of 

an apparent A* chosen so that 

(67) 

The ratio A*/A can be derived formally from the 

similarity solutions given in subsections 3(a), 3(b) and 

3(c) in the form 

A* = A(l+CM-i) (68) 

where 0 < C < 1 and C is related to e*. Some details 

are given in the Appendjx of [2], where it becomes 
clear that the value C = 0 taken by Shapiro [5] is too 

high. This value was obtained by supposing that all 
the heat required to raise the temperature of the 

melting fluid to the mean temperature f3 came from 
conduction at the melting interface. If however one 
assumes that the heat required to raise the temprature 
of the fluid melted at the interface y = 6 to 6 comes 

equally from the interfaces y = 0 and y = 6, then 

c = +e*. (69) 

An exact expansion shows that in the case B = 0, 
Gn=O, 

c=&. 

By dealing almost entirely with similarity solutions 
we have avoided serious consideration of any initial 

conditions at z = 0. If we are given Q(0) we can estimate 
6(O) and hence obtain a(O). Using a particular similarity 
solution yielding a given A, this means that 

i(O) = & aZ(0) and not zero 

and so 

In practice LX’(O) soon becomes negligible. 
A preliminary application of this work to the melting 

of polymer granules is given in another report [6]; 
further work is in progress. 
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SUR LA FUSION DES SOLIDES AU VOISINAGE DUN INTERFACE CHAUD MOBILE, 
AVEC REFERENCE PARTICULIERE AU CAS DES LITS DE POLYMERES GRANULES 

Rksnm&-On prkente quelques solutions de similitude pour les profils de vitesse et de temperature a 
l’intbieur du film mince de fluide qui se forme entre un interface chaud en mouvement et le solide en fusion. 
L’utilisation de variables adimensionnelles met en evidence le role des divers groupements sans dimension, 
et en particulier lorsqu’on considere le cisaillement d’un fluide dont la viscosite depend de la temperature. 

Une methode de solution euristique simplified est discutee pour le problemme complet dans le cas de 
l’extrnsion avec deformation plastique. 

DAS SCHMELZEN VON FESTKGRPERN NAHE EINER HEISSEN BEWEGTEN 
SCHICHT, INSBESONDERE VON POLYMER-GRANULAT-BETTEN 

Z~arnrn~f~ng-~hnli~hkeitsi~sungen werden angegeben fiir Geschwindigkeits-und Temperatur- 
protile im dtinnen Film eines Fluids, der sich zwischen der bewegten he&en Zwischenschicht und dem 
schmelzenden Festkiirper bildet. Die Beniitzung von dimensionslosen Variablen zeigt die Rolle der 
verschiedenen dimensionslosen Gruppen, insbesondere fiir schubspannungs- und temperaturabhangige 
viskose Fluide. Eine vereinfachte heuristische Lijsungsmethode des Gesamtproblems fiir Plastik-Extruder 

wird diskutiert. 

0 l-IJIABJIEHI4M TBEPAblX TEJI B6JIM3M ABFDKYIBEtiCII I-OPClHEH IIOBEPXHOCTM 
PA3AEJlA IIPMMEHMTEJIbHO K CJIOIlM l-PAHYJIMPOBAHHblX IlOJIMMEPOB 

Asmoramm - H~NBO,XIS~TCR neKoropbre petueunn nono6ur nna npo@wneii cxopocru H reMneparypt,t 
B TOHKO@ mw~oif nnettKe, o6pa3y~me~ca Mexray neifmymeiics ropsyeii noeepxuocrbto pa3nefla 
W n~aSxLllHMCff TBepnbiM TeJlOM. C IlOMOlUbFO 6e3pa3MepHblX IlefEMeHHbIX BblRBJlReTCR 3HaYeHHe 

pa3JlM’lHblX 6e3pi33MepHblX rpylln, B ‘(BCTHOCTH IlpFi PaCCMOTPeHRR XWIKOCTH, BI13KOCTb KOTOpOti 

3aBllCtiT OT HaIlp%iR?HH5l CllBHra H ‘EMllejXiTypbl. 

AHami3HpyeTCSI yIlpOlLleHHblfi 3BpiiCTWi~CKH~ MeTOn ~llJeH~Sl3WGPW iIpliMeHBTW’lbH0 K CJl)%UO 

n~a~T~~~py~~~X 3KCTPYilePOB. 


